跟我学Springboot开发后端管理系统5:数据库读写分离

在Matrix-web后台管理系统中,使用到了数据库的读写分离技术。采用的开源的Sharding-JDBC作为数据库读写分离的框架。Matrix-Web后台数据库这一块采用的技术栈如下:

  • 使用Mybatis-Plus作为ORM框架
  • 使用Druid或者HikariCP作为数据库连接池
  • 使用Sharding-JDBC 作为数据库读写分离的框架

本篇文章将讲述在Sharding-JDBC在Matrix-Web中的应用。

Sharding-JDBC简介

Sharding-JDBC是的分布式数据库中间件解决方案。Sharding-JDBC、Sharding-Proxy和Sharding-Sidecar(计划中)是3款相互独立的产品,共同
组成了ShardingSphere。Sharding-JDBC定位于轻量级的Java框架,它使用客户端直连数据库,可理解为增强版的JDBC驱动,完全兼容JDBC和各种ORM框架。

  • 适用于任何基于Java的ORM框架,如:JPA, Hibernate, Mybatis, Spring JDBC Template或直接使用JDBC。
  • 基于任何第三方的数据库连接池,如:DBCP, C3P0, BoneCP, Druid, HikariCP等。
  • 支持任意实现JDBC规范的数据库。目前支持MySQL,Oracle,SQLServer和PostgreSQL。

架构图如下:

支持以下的特效:

  • 分库分表
  • 读写分离
  • 柔性事务
  • 分布式主键
  • 分布式治理能力

Spring Boot中使用Sharding-JDBC

在Matrix-Web项目中并没有搭建数据库的主从,所以只能用一个库去模仿数据,关于数据库的读写分离和分库分表,可以参考我的另外几篇文章:

Sharding-JDBC教程:Mysql数据库主从搭建

Sharding-JDBC教程:Spring Boot整合Sharding-JDBC实现读写分离

Sharding-JDBC教程:Spring Boot整合Sharding-JDBC实现数据分表+读写分离

Sharding-JDBC教程:Spring Boot整合Sharding-JDBC实现分库分表+读写分离

在本项目中,采用相同的库区模拟主库和从库:

数据库类型数据库ip
aries127.0.0.1
aries127.0.0.1

Sharding-Jdbc集合Druid和MyBatis-Plus

在本篇文章中使用Spring Boot 2.0.3+Druid+Sharding-JDBC+MyBatis-Plus+MySQL进行读写分离的案件讲解。

在工程的pom文件引入以下的依赖,包括Spring Boot的Web起步依赖spring-boot-starter-web,mybatis的起步依赖mybatis-spring-boot-starter,
mysql的连机器,连接池druid的起步依赖druid-spring-boot-starter,sharding-jdbc的起步依赖sharding-jdbc-spring-boot-starter。代码如下:

 <dependency>
    <groupId>org.mybatis.spring.boot</groupId>
    <artifactId>mybatis-spring-boot-starter</artifactId>
    <version>1.3.2</version>
</dependency>
<dependency>
    <groupId>mysql</groupId>
    <artifactId>mysql-connector-java</artifactId></dependency>

<dependency>
    <groupId>com.alibaba</groupId>
    <artifactId>druid-spring-boot-starter</artifactId>
    <version>1.1.10</version>
</dependency>

<dependency>
     <groupId>io.shardingsphere</groupId>
     <artifactId>sharding-jdbc-spring-boot-starter</artifactId>
    <version>3.1.0.M1</version>
</dependency>

在spring boot工程配置文件application.yml做以下的配置:

sharding:
  jdbc:
    dataSource:
      names: db-test0,db-test1,db-test2
      # 配置主库
      db-test0: #org.apache.tomcat.jdbc.pool.DataSource
        type: com.alibaba.druid.pool.DruidDataSource
        driverClassName: com.mysql.jdbc.Driver
        url: jdbc:mysql://127.0.0.1:3306/aries?useUnicode=true&characterEncoding=utf8&tinyInt1isBit=false&useSSL=false&serverTimezone=GMT
        username: root
        password: 123456
        #最大连接数
        maxPoolSize: 20
      db-test1: # 配置第一个从库
        type: com.alibaba.druid.pool.DruidDataSource
        driverClassName: com.mysql.jdbc.Driver
        url: jdbc:mysql://127.0.0.1:3306/aries?useUnicode=true&characterEncoding=UTF-8&allowMultiQueries=true&useSSL=false&serverTimezone=GMT
        username: root
        password: 123456
        maxPoolSize: 20
      db-test2: # 配置第二个从库
        type: com.alibaba.druid.pool.DruidDataSource
        driverClassName: com.mysql.jdbc.Driver
        url: jdbc:mysql://127.0.0.1:3306/aries?useUnicode=true&characterEncoding=UTF-8&allowMultiQueries=true&useSSL=false&serverTimezone=GMT
        username: root
        password: 123456
        maxPoolSize: 20
    config:
      masterslave: # 配置读写分离
        load-balance-algorithm-type: round_robin # 配置从库选择策略,提供轮询与随机,这里选择用轮询//random 随机 //round_robin 轮询
        name: db1s2
        master-data-source-name: db-test0
        slave-data-source-names: db-test1,db-test2
    props:
      sql: # 开启SQL显示,默认值: false,注意:仅配置读写分离时不会打印日志!!!
        show: false
        
        
mybatis-plus:
  datasource: dataSource
  mapper-locations: classpath:/mapper/*Mapper.xml
  #实体扫描,多个package用逗号或者分号分隔
  typeAliasesPackage: io.github.forezp.modules.system.entity
  typeEnumsPackage: io.github.forezp.modules.system.entity.enums
  global-config:
    db-config:
      id-type: id_worker
      capital-mode: true
    #主键类型  0:"数据库ID自增", 1:"用户输入ID",2:"全局唯一ID (数字类型唯一ID)", 3:"全局唯一ID UUID";
    id-type: 2
    #字段策略 0:"忽略判断",1:"非 NULL 判断"),2:"非空判断"
    field-strategy: 2
    #驼峰下划线转换
    db-column-underline: true
    #刷新mapper 调试神器
    refresh-mapper: true
    #数据库大写下划线转换
    #capital-mode: true
    #序列接口实现类配置
    #key-generator: com.baomidou.springboot.xxx
    #逻辑删除配置
    logic-delete-value: 0
    logic-not-delete-value: 1
    #自定义填充策略接口实现
#    meta-object-handler: com.baomidou.springboot.xxx
    #自定义SQL注入器
    #sql-injector: com.baomidou.springboot.xxx
  configuration:
    map-underscore-to-camel-case: true
    cache-enabled: false
    log-impl: org.apache.ibatis.logging.stdout.StdOutImpl


sharding.jdbc.dataSource.names配置的是数据库的名称,就是多个数据源的名称。
sharding.jdbc.dataSource配置多个数据源。需要配置数据库名称,和上面配置的对应。以及数据的配置,包括连接池的类型、连接器、数据库地址、
数据库账户密码信息等。
sharding.jdbc.config.masterslave.load-balance-algorithm-type查询时的负载均衡算法,目前有2种算法,round_robin(轮询)和random(随机)。
sharding.jdbc.config.masterslave.master-data-source-name主数据源名称。
sharding.jdbc.config.masterslave.slave-data-source-names从数据源名称,多个用逗号隔开。

微信截图_20190626145550.png

Sharing-JDBC结合HikariCP

在pom文件中将Druid的起步依赖换成HikariCP:

<dependency>
   <groupId>com.zaxxer</groupId>
   <artifactId>HikariCP</artifactId>
   <version>${HikariCP.version}</version>
</dependency>

在配置文件application将sharing.jdbc.datasouce.db-test1.type改成com.zaxxer.hikari.HikariDataSource,具体如下:

sharding:
  jdbc:
    dataSource:
      names: db-test0,db-test1,db-test2
      # 配置主库
      db-test0: #org.apache.tomcat.jdbc.pool.DataSource
#        type: com.alibaba.druid.pool.DruidDataSource
        type: com.zaxxer.hikari.HikariDataSource
        driverClassName: com.mysql.jdbc.Driver
        jdbcUrl: jdbc:mysql://localhost:3306/aries?useUnicode=true&characterEncoding=utf8&tinyInt1isBit=false&useSSL=false&serverTimezone=GMT
        username: root
        password: 123456
        #最大连接数
        maxPoolSize: 20
      db-test1: # 配置第一个从库
#        type: com.alibaba.druid.pool.DruidDataSource
        type: com.zaxxer.hikari.HikariDataSource
        driverClassName: com.mysql.jdbc.Driver
        jdbcUrl: jdbc:mysql://localhost:3306/aries?useUnicode=true&characterEncoding=UTF-8&allowMultiQueries=true&useSSL=false&serverTimezone=GMT
        username: root
        password: 123456
        maxPoolSize: 20
      db-test2: # 配置第二个从库
#        type: com.alibaba.druid.pool.DruidDataSource
        type: com.zaxxer.hikari.HikariDataSource
        driverClassName: com.mysql.jdbc.Driver
        jdbcUrl: jdbc:mysql://localhost:3306/aries?useUnicode=true&characterEncoding=UTF-8&allowMultiQueries=true&useSSL=false&serverTimezone=GMT
        username: root
        password: 123456
        maxPoolSize: 20
    config:
      masterslave: # 配置读写分离
        load-balance-algorithm-type: round_robin # 配置从库选择策略,提供轮询与随机,这里选择用轮询//random 随机 //round_robin 轮询
        name: db1s2
        master-data-source-name: db-test0
        slave-data-source-names: db-test1,db-test2
    props:
      sql: # 开启SQL显示,默认值: false,注意:仅配置读写分离时不会打印日志!!!
        show: true

源码下载

参考资料

https://github.com/apache/incubator-shardingsphere-example/releases/tag/3.1.0.M1

https://shardingsphere.apache.org/document/current/cn/overview/

https://github.com/apache/incubator-shardingsphere

参考资料

https://www.rowkey.me/blog/2018/05/12/java-tech-overview/

http://www.51testing.com/html/74/n-3723674.html

源码下载

https://github.com/forezp/matrix-web

已标记关键词 清除标记
课程简介 随着互联网的发展,软件的规模在逐渐变大,用关系型数据库如何存储和处理大规模的业务数据成为企业面临的挑战, 关系型数据库作为OLTP(联机事务处理过程)系统的首选毋庸置疑,但是关系型数据面对大规模数据的处理有其先天的不足,比如单表存储上千万数据时便会出现不同程度的处理速度缓慢问题,如何解决?分库分表技术就是为了解决由于数据量过大而导致数据库性能降低的问题,将原来独立的数据库拆分成若干数据库组成 ,将数据大表拆分成若干数据表组成,使得单一数据库、单一数据表的数据量变小,从而达到提升数据库性能的目的。本课程将系统的讲解分库分表技术。 课程价值 分库分表技术是为解决关系型数据库存储和处理大规模数据的问题,主要应用于OLTP系统,它与应用于OLAP(联机分析处理)的大数据技术有不同的应用场景,本课程本着从解决生产实际问题出发,讲授分库分表技术的解决方案,包括:垂直分库、垂直分表、水平分库、水平分表、读写分离,涵盖了分库分表的各种方案,并且深入讲解Sharding-JDBC框架的原理及使用方法,通过学习本课程可以快速应用到生产实践中。 课程优势 本课程不仅讲解多种有效的分库分表的解决方案,还深入讲解了Sharding-JDBC框架的原理和使用方法,Sharding-JDBC是一套轻量级的对代码零侵入的框架,在生产中有广泛的使用。本课程从思想原理、技术框架、案例实操三个方面去学习,可以快速的将分库分表技术应用到生产实践中,解决大数据存储与处理的问题。
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页