spring cloud gateway 之限流篇

转载请标明出处:
http://blog.csdn.net/forezp/article/details/85081162
本文出自方志朋的博客

个人博客纯净版:https://www.fangzhipeng.com/springcloud/2018/12/22/sc-f-gatway4.html

在高并发的系统中,往往需要在系统中做限流,一方面是为了防止大量的请求使服务器过载,导致服务不可用,另一方面是为了防止网络攻击。

常见的限流方式,比如Hystrix适用线程池隔离,超过线程池的负载,走熔断的逻辑。在一般应用服务器中,比如tomcat容器也是通过限制它的线程数来控制并发的;也有通过时间窗口的平均速度来控制流量。常见的限流纬度有比如通过Ip来限流、通过uri来限流、通过用户访问频次来限流。

一般限流都是在网关这一层做,比如Nginx、Openresty、kong、zuul、Spring Cloud Gateway等;也可以在应用层通过Aop这种方式去做限流。

本文详细探讨在 Spring Cloud Gateway 中如何实现限流。

常见的限流算法

计数器算法

计数器算法采用计数器实现限流有点简单粗暴,一般我们会限制一秒钟的能够通过的请求数,比如限流qps为100,算法的实现思路就是从第一个请求进来开始计时,在接下去的1s内,每来一个请求,就把计数加1,如果累加的数字达到了100,那么后续的请求就会被全部拒绝。等到1s结束后,把计数恢复成0,重新开始计数。具体的实现可以是这样的:对于每次服务调用,可以通过AtomicLong#incrementAndGet()方法来给计数器加1并返回最新值,通过这个最新值和阈值进行比较。这种实现方式,相信大家都知道有一个弊端:如果我在单位时间1s内的前10ms,已经通过了100个请求,那后面的990ms,只能眼巴巴的把请求拒绝,我们把这种现象称为“突刺现象”

漏桶算法

漏桶算法为了消除"突刺现象",可以采用漏桶算法实现限流,漏桶算法这个名字就很形象,算法内部有一个容器,类似生活用到的漏斗,当请求进来时,相当于水倒入漏斗,然后从下端小口慢慢匀速的流出。不管上面流量多大,下面流出的速度始终保持不变。不管服务调用方多么不稳定,通过漏桶算法进行限流,每10毫秒处理一次请求。因为处理的速度是固定的,请求进来的速度是未知的,可能突然进来很多请求,没来得及处理的请求就先放在桶里,既然是个桶,肯定是有容量上限,如果桶满了,那么新进来的请求就丢弃。

在这里插入图片描述

在算法实现方面,可以准备一个队列,用来保存请求,另外通过一个线程池(ScheduledExecutorService)来定期从队列中获取请求并执行,可以一次性获取多个并发执行。

这种算法,在使用过后也存在弊端:无法应对短时间的突发流量。

令牌桶算法

从某种意义上讲,令牌桶算法是对漏桶算法的一种改进,桶算法能够限制请求调用的速率,而令牌桶算法能够在限制调用的平均速率的同时还允许一定程度的突发调用。在令牌桶算法中,存在一个桶,用来存放固定数量的令牌。算法中存在一种机制,以一定的速率往桶中放令牌。每次请求调用需要先获取令牌,只有拿到令牌,才有机会继续执行,否则选择选择等待可用的令牌、或者直接拒绝。放令牌这个动作是持续不断的进行,如果桶中令牌数达到上限,就丢弃令牌,所以就存在这种情况,桶中一直有大量的可用令牌,这时进来的请求就可以直接拿到令牌执行,比如设置qps为100,那么限流器初始化完成一秒后,桶中就已经有100个令牌了,这时服务还没完全启动好,等启动完成对外提供服务时,该限流器可以抵挡瞬时的100个请求。所以,只有桶中没有令牌时,请求才会进行等待,最后相当于以一定的速率执行。

在这里插入图片描述

实现思路:可以准备一个队列,用来保存令牌,另外通过一个线程池定期生成令牌放到队列中,每来一个请求,就从队列中获取一个令牌,并继续执行。

Spring Cloud Gateway限流

在Spring Cloud Gateway中,有Filter过滤器,因此可以在“pre”类型的Filter中自行实现上述三种过滤器。但是限流作为网关最基本的功能,Spring Cloud Gateway官方就提供了RequestRateLimiterGatewayFilterFactory这个类,适用Redis和lua脚本实现了令牌桶的方式。具体实现逻辑在RequestRateLimiterGatewayFilterFactory类中,lua脚本在如下图所示的文件夹中:

在这里插入图片描述

具体源码不打算在这里讲述,读者可以自行查看,代码量较少,先以案例的形式来讲解如何在Spring Cloud Gateway中使用内置的限流过滤器工厂来实现限流。

首先在工程的pom文件中引入gateway的起步依赖和redis的reactive依赖,代码如下:


 <dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-gateway</artifactId>
</dependency>

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifatId>spring-boot-starter-data-redis-reactive</artifactId>
</dependency>

在配置文件中做以下的配置:


server:
  port: 8081
spring:
  cloud:
    gateway:
      routes:
      - id: limit_route
        uri: http://httpbin.org:80/get
        predicates:
        - After=2017-01-20T17:42:47.789-07:00[America/Denver]
        filters:
        - name: RequestRateLimiter
          args:
            key-resolver: '#{@hostAddrKeyResolver}'
            redis-rate-limiter.replenishRate: 1
            redis-rate-limiter.burstCapacity: 3
  application:
    name: gateway-limiter
  redis:
    host: localhost
    port: 6379
    database: 0


在上面的配置文件,指定程序的端口为8081,配置了 redis的信息,并配置了RequestRateLimiter的限流过滤器,该过滤器需要配置三个参数:

  • burstCapacity,令牌桶总容量。
  • replenishRate,令牌桶每秒填充平均速率。
  • key-resolver,用于限流的键的解析器的 Bean 对象的名字。它使用 SpEL 表达式根据#{@beanName}从 Spring 容器中获取 Bean 对象。

KeyResolver需要实现resolve方法,比如根据Hostname进行限流,则需要用hostAddress去判断。实现完KeyResolver之后,需要将这个类的Bean注册到Ioc容器中。


public class HostAddrKeyResolver implements KeyResolver {

    @Override
    public Mono<String> resolve(ServerWebExchange exchange) {
        return Mono.just(exchange.getRequest().getRemoteAddress().getAddress().getHostAddress());
    }

}

 @Bean
    public HostAddrKeyResolver hostAddrKeyResolver() {
        return new HostAddrKeyResolver();
    }

可以根据uri去限流,这时KeyResolver代码如下:


public class UriKeyResolver  implements KeyResolver {

    @Override
    public Mono<String> resolve(ServerWebExchange exchange) {
        return Mono.just(exchange.getRequest().getURI().getPath());
    }

}

 @Bean
    public UriKeyResolver uriKeyResolver() {
        return new UriKeyResolver();
    }

 

也可以以用户的维度去限流:


   @Bean
    KeyResolver userKeyResolver() {
        return exchange -> Mono.just(exchange.getRequest().getQueryParams().getFirst("user"));
    }


用jmeter进行压测,配置10thread去循环请求lcoalhost:8081,循环间隔1s。从压测的结果上看到有部分请求通过,由部分请求失败。通过redis客户端去查看redis中存在的key。如下:

在这里插入图片描述

可见,RequestRateLimiter是使用Redis来进行限流的,并在redis中存储了2个key。关注这两个key含义可以看lua源代码。

源码下载

https://github.com/forezp/SpringCloudLearning/tree/master/sc-f-gateway-limiter

更多阅读

史上最简单的 SpringCloud 教程汇总

SpringBoot教程汇总

Java面试题系列汇总

参考资料

http://cloud.spring.io/spring-cloud-static/spring-cloud-gateway/2.0.0.RELEASE/single/spring-cloud-gateway.html#_requestratelimiter_gatewayfilter_factory

https://windmt.com/2018/05/09/spring-cloud-15-spring-cloud-gateway-ratelimiter/

http://www.spring4all.com/article/1382


扫一扫,支持下作者吧

(转载本站文章请注明作者和出处 方志朋的博客

已标记关键词 清除标记
相关推荐
本课程总计13大章节,115课时,是一门全面的SpringCloud微服务体系化课程。课程共包括十三个大章节,涵盖注册中心、网关、熔断、降级、监控、安全、限流等全部体系。包含阿里巴巴Nacos,Consul,Spring Cloud Gateway,OAuth2.0 JWT 等主流技术。     [为什么要学习Spring Cloud微服务] SpringCloud作为主流微服务框架,已成为各互联网公司的首选框架,国内外企业占有率持续攀升,是Java工程师的必备技能。就连大名鼎鼎的阿里巴巴dubbo也正式更名为Spring Cloud Alibaba,成为了Spring Cloud 微服务中的一个子模块。Spring Cloud是企业架构转型、个人能力提升、架构师进阶的不二选择。     【推荐你学习这门课的理由:知识体系完整+丰富学习资料】   1、本课程总计13大章节,115课时,是一门全面的SpringCloud微服务体系化课程。 2、课程0基础入门,逐层递进深入,理论和代码相结合。 3、十三个大章节,涵盖注册中心、网关、熔断、降级、监控、安全、限流等全部体系。 4、包含阿里巴巴Nacos,Consul,Spring Cloud Gateway,OAuth2.0 JWT 主流技术。 5、课程附带230页高清PDF正版课件、Hoxton版本配套项目源码37个、Edgware版本配套项目26个,所有代码均有详细注释。     【主讲讲师】 尹洪亮Kevin: 现任职某互联网公司首席架构师,负责系统架构、项目群管理、产品研发工作。 10余年软件行业经验,具有数百个线上项目实战经验。 擅长JAVA技术栈、高并发高可用伸缩式微服务架构、DevOps。 主导研发的蜂巢微服务架构已经成功支撑数百个微服务稳定运行     【学完后我将达到什么水平?】 1、 对Spring Cloud的各个组件能够熟练配置、开发、部署。 2、 吊打一切关于Spring Cloud微服务的笔试面试题 3、 能够上手搭建十分完整的微服务分布式系统,涵盖服务注册与发现、负载、网关、配置中心、监控、安全、熔断等。 4、 对整个微服务体系架构有十分清晰准确的掌握。   【面向人群】 1、 不了解微服务是什么,感觉微服务很难、不敢学,网上资料松散,没有好的学习资料 2、 这么多年还一直在写SSH、SSM项目,没有更新过自己的知识体系。 3、 Spring Cloud组件太多,不知道应该重点关注和学习哪些。 4、 不会搭建微服务项目、依赖项目太多、完全搞不清楚。   【课程知识体系图】
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页