Sharding-JDBC教程:Spring Boot整合Sharding-JDBC实现读写分离

转载请标明出处:
http://blog.csdn.net/forezp/article/details/94174114
本文出自方志朋的博客

个人博客纯净版:https://www.fangzhipeng.com/db/2019/06/26/shardingjdbc-master-slave.html

Sharding-JDBC简介

Sharding-JDBC是的分布式数据库中间件解决方案。Sharding-JDBC、Sharding-Proxy和Sharding-Sidecar(计划中)是3款相互独立的产品,共同
组成了ShardingSphere。Sharding-JDBC定位于轻量级的Java框架,它使用客户端直连数据库,可理解为增强版的JDBC驱动,完全兼容JDBC和各种ORM框架。

  • 适用于任何基于Java的ORM框架,如:JPA, Hibernate, Mybatis, Spring JDBC Template或直接使用JDBC。
  • 基于任何第三方的数据库连接池,如:DBCP, C3P0, BoneCP, Druid, HikariCP等。
  • 支持任意实现JDBC规范的数据库。目前支持MySQL,Oracle,SQLServer和PostgreSQL。

架构图如下:

在这里插入图片描述

支持以下的特效:

  • 分库分表
  • 读写分离
  • 柔性事务
  • 分布式主键
  • 分布式治理能力

工程准备

在上一篇文章中已经详细的讲解了如何构建Mysql5.7的读写分离,并且已经构建好了。详细信息如下:

数据库类型数据库ip
cool10.0.0.3
cool10.0.0.13
cool10.0.0.17

在主库里面执行以下的数据库初始化脚本:

USE `cool`;

DROP TABLE IF EXISTS `user`;

CREATE TABLE `user` (
  `id` int(12) NOT NULL AUTO_INCREMENT,
  `username` varchar(12) NOT NULL,
  `password` varchar(30) NOT NULL,
  PRIMARY KEY (`id`),
  UNIQUE KEY `idx-username` (`username`)
) ENGINE=InnoDB AUTO_INCREMENT=12 DEFAULT CHARSET=utf8;

在上一篇文章中,主从数据库已经搭建好了,所以执行完上面的脚本后,2个从库应该也有user表。

案例讲解

在本篇文章中使用Spring Boot 2.0.3+MyBatis+Druid+Sharding-JDBC+MySQL进行读写分离的案件讲解。
关于Mybatis部分的代码生成可以参考https://github.com/forezp/mybatis-generator这里,Mybatis部分的配置和代码在这里
就不详细说明,详情可以查看源代码。工程结构如下图所示:

在这里插入图片描述

在工程的pom文件引入以下的依赖,包括Spring Boot的Web起步依赖spring-boot-starter-web,mybatis的起步依赖mybatis-spring-boot-starter,
mysql的连机器,连接池druid的起步依赖druid-spring-boot-starter,sharding-jdbc的起步依赖sharding-jdbc-spring-boot-starter。代码如下:

  <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>

        <dependency>
            <groupId>org.mybatis.spring.boot</groupId>
            <artifactId>mybatis-spring-boot-starter</artifactId>
            <version>1.3.2</version>
        </dependency>

        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
        </dependency>

        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>druid-spring-boot-starter</artifactId>
            <version>1.1.10</version>
        </dependency>

        <dependency>
            <groupId>io.shardingsphere</groupId>
            <artifactId>sharding-jdbc-spring-boot-starter</artifactId>
            <version>3.1.0.M1</version>
        </dependency>

在spring boot工程配置文件application.yml做以下的配置:



sharding:
  jdbc:
    dataSource:
      names: db-test0,db-test1,db-test2
      # 配置主库
      db-test0: #org.apache.tomcat.jdbc.pool.DataSource
        type: com.alibaba.druid.pool.DruidDataSource
        driverClassName: com.mysql.jdbc.Driver
        url: jdbc:mysql://10.0.0.3:3306/cool?useUnicode=true&characterEncoding=utf8&tinyInt1isBit=false&useSSL=false&serverTimezone=GMT
        username: root
        password:
        #最大连接数
        maxPoolSize: 20
      db-test1: # 配置第一个从库
        type: com.alibaba.druid.pool.DruidDataSource
        driverClassName: com.mysql.jdbc.Driver
        url: jdbc:mysql://10.0.0.13:3306/cool?useUnicode=true&characterEncoding=UTF-8&allowMultiQueries=true&useSSL=false&serverTimezone=GMT
        username: root
        password:
        maxPoolSize: 20
      db-test2: # 配置第二个从库
        type: com.alibaba.druid.pool.DruidDataSource
        driverClassName: com.mysql.jdbc.Driver
        url: jdbc:mysql://10.0.0.17:3306/cool?useUnicode=true&characterEncoding=UTF-8&allowMultiQueries=true&useSSL=false&serverTimezone=GMT
        username: root
        password:
        maxPoolSize: 20
    config:
      masterslave: # 配置读写分离
        load-balance-algorithm-type: round_robin # 配置从库选择策略,提供轮询与随机,这里选择用轮询//random 随机 //round_robin 轮询
        name: db1s2
        master-data-source-name: db-test0
        slave-data-source-names: db-test1,db-test2
    props:
      sql: # 开启SQL显示,默认值: false,注意:仅配置读写分离时不会打印日志!!!
        show: true

sharding.jdbc.dataSource.names配置的是数据库的名称,就是多个数据源的名称。
sharding.jdbc.dataSource配置多个数据源。需要配置数据库名称,和上面配置的对应。以及数据的配置,包括连接池的类型、连接器、数据库地址、
数据库账户密码信息等。
sharding.jdbc.config.masterslave.load-balance-algorithm-type查询时的负载均衡算法,目前有2种算法,round_robin(轮询)和random(随机)。
sharding.jdbc.config.masterslave.master-data-source-name主数据源名称。
sharding.jdbc.config.masterslave.slave-data-source-names从数据源名称,多个用逗号隔开。

在这里插入图片描述

案例验证

写2个接口,代码如下:

@RestController
public class UserController {

    @Autowired
    private UserService userService;

    @GetMapping("/users")
    public Object list() {
        return userService.list();
    }

    @GetMapping("/add")
    public Object add(@RequestParam Integer id,@RequestParam String username,@RequestParam String  password) {
        User user = new User();
        user.setId(id);
        user.setUsername(username);
        user.setPassword(password);
        return userService.addUser(user);
    }
}

在上一篇文章中,已经开启了数据库的CRUD日志,日志目录在/var/lib/mysql目录下。

调用2个接口,可以在主库对应主机的日志目录下查看插入数据的日志:

2019-06-20T02:50:25.183174Z	 2030 Query	select @@session.transaction_read_only
2019-06-20T02:50:25.193506Z	 2030 Query	INSERT INTO user (
          id, username, password
        )
        VALUES (
        134,
        'forezp134',
        '1233edwd'
        )

从库对应主机的日志目录下查看查询数据的日志:

2019-06-20T02:41:28.450643Z	 7367 Query	SELECT u.* FROM user u

这就说明,Sharding-JDBC实现了数据库的读写分离。

源码下载

https://github.com/forezp/SpringBootLearning/tree/master/sharding-jdbc-example/sharding-jdbc-master-slave

参考资料

https://github.com/apache/incubator-shardingsphere-example/releases/tag/3.1.0.M1

https://shardingsphere.apache.org/document/current/cn/overview/

https://github.com/apache/incubator-shardingsphere


扫码关注有惊喜

(转载本站文章请注明作者和出处 方志朋的博客

已标记关键词 清除标记
课程简介 随着互联网的发展,软件的规模在逐渐变大,用关系型数据库如何存储和处理大规模的业务数据成为企业面临的挑战, 关系型数据库作为OLTP(联机事务处理过程)系统的首选毋庸置疑,但是关系型数据面对大规模数据的处理有其先天的不足,比如单表存储上千万数据时便会出现不同程度的处理速度缓慢问题,如何解决?分库分表技术就是为了解决由于数据量过大而导致数据库性能降低的问题,将原来独立的数据库拆分成若干数据库组成 ,将数据大表拆分成若干数据表组成,使得单一数据库、单一数据表的数据量变小,从而达到提升数据库性能的目的。本课程将系统的讲解分库分表技术。 课程价值 分库分表技术是为解决关系型数据库存储和处理大规模数据的问题,主要应用于OLTP系统,它与应用于OLAP(联机分析处理)的大数据技术有不同的应用场景,本课程本着从解决生产实际问题出发,讲授分库分表技术的解决方案,包括:垂直分库、垂直分表、水平分库、水平分表、读写分离,涵盖了分库分表的各种方案,并且深入讲解Sharding-JDBC框架的原理及使用方法,通过学习本课程可以快速应用到生产实践中。 课程优势 本课程不仅讲解多种有效的分库分表的解决方案,还深入讲解了Sharding-JDBC框架的原理和使用方法,Sharding-JDBC是一套轻量级的对代码零侵入的框架,在生产中有广泛的使用。本课程从思想原理、技术框架、案例实操三个方面去学习,可以快速的将分库分表技术应用到生产实践中,解决大数据存储与处理的问题。
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页