Sharding-JDBC教程:Spring Boot整合Sharding-JDBC实现数据分表+读写分离

转载请标明出处:
http://blog.csdn.net/forezp/article/details/94174577
本文出自方志朋的博客

个人博客纯净版: https://www.fangzhipeng.com/db/2019/06/30/sharding-jdbc-tables-ms.html

读写分离

在上一篇文章介绍了如何使用Sharing-JDBC实现数据库的读写分离。读写分离的好处就是在并发量比较大的情况下,将查询数据库的压力
分担到多个从库中,能够满足高并发的要求。比如上一篇实现的那样,架构图如下:

在这里插入图片描述

数据分表

当数据量比较大的时候,比如单个表的数据量超过了500W的数据,这时可以考虑将数据存储在不同的表中。比如将user表拆分为四个表user_0、user_1、
user_2、user_3装在四个表中。此时如图所示:

在这里插入图片描述

案例详解

和上一篇文章使用的数据库是同一个数据库,数据库信息如下:

数据库类型数据库ip
cool10.0.0.3
cool10.0.0.13
cool10.0.0.17

在主库初始化Mysql数据的脚本,初始化完后,从库也会创建这些表,脚本信息如下:

USE `cool`;

/*Table structure for table `user_0` */

DROP TABLE IF EXISTS `user_0`;

CREATE TABLE `user_0` (
  `id` int(12) NOT NULL AUTO_INCREMENT,
  `username` varchar(12) NOT NULL,
  `password` varchar(30) NOT NULL,
  PRIMARY KEY (`id`),
  KEY `idx-username` (`username`)
) ENGINE=InnoDB AUTO_INCREMENT=149 DEFAULT CHARSET=utf8;

/*Table structure for table `user_1` */

DROP TABLE IF EXISTS `user_1`;

CREATE TABLE `user_1` (
  `id` int(12) NOT NULL AUTO_INCREMENT,
  `username` varchar(12) NOT NULL,
  `password` varchar(30) NOT NULL,
  PRIMARY KEY (`id`),
  KEY `idx-username` (`username`)
) ENGINE=InnoDB AUTO_INCREMENT=150 DEFAULT CHARSET=utf8;

/*Table structure for table `user_2` */

DROP TABLE IF EXISTS `user_2`;

CREATE TABLE `user_2` (
  `id` int(12) NOT NULL AUTO_INCREMENT,
  `username` varchar(12) NOT NULL,
  `password` varchar(30) NOT NULL,
  PRIMARY KEY (`id`),
  KEY `idx-username` (`username`)
) ENGINE=InnoDB AUTO_INCREMENT=147 DEFAULT CHARSET=utf8;

/*Table structure for table `user_3` */

DROP TABLE IF EXISTS `user_3`;

CREATE TABLE `user_3` (
  `id` int(12) NOT NULL AUTO_INCREMENT,
  `username` varchar(12) NOT NULL,
  `password` varchar(30) NOT NULL,
  PRIMARY KEY (`id`),
  KEY `idx-username` (`username`)
) ENGINE=InnoDB AUTO_INCREMENT=148 DEFAULT CHARSET=utf8;

本案例还是在上一篇文章的案例基础之上进行改造,工程的目录和pom的依赖见上一篇文章或者源码。在工程的配置
文件application.yml做Sharding-JDBC的配置,代码如下:


sharding:
  jdbc:
    dataSource:
      names: db-test0,db-test1,db-test2
      db-test0: #org.apache.tomcat.jdbc.pool.DataSource
        type: com.alibaba.druid.pool.DruidDataSource
        driverClassName: com.mysql.jdbc.Driver
        url: jdbc:mysql://10.0.0.3:3306/cool?useUnicode=true&characterEncoding=utf8&tinyInt1isBit=false&useSSL=false&serverTimezone=GMT
        username: root
        password: 
        maxPoolSize: 20
      db-test1:
        type: com.alibaba.druid.pool.DruidDataSource
        driverClassName: com.mysql.jdbc.Driver
        url: jdbc:mysql://10.0.0.13:3306/cool?useUnicode=true&characterEncoding=UTF-8&allowMultiQueries=true&useSSL=false&serverTimezone=GMT
        username: root
        password: 
        maxPoolSize: 20
      db-test2:
        type: com.alibaba.druid.pool.DruidDataSource
        driverClassName: com.mysql.jdbc.Driver
        url: jdbc:mysql://10.0.0.17:3306/cool?useUnicode=true&characterEncoding=UTF-8&allowMultiQueries=true&useSSL=false&serverTimezone=GMT
        username: root
        password: 
        maxPoolSize: 20
    props:
      sql:
        show: true
sharding.jdbc.config.sharding.tables.user.actual-data-nodes: ds_0.user_$->{0..3}
sharding.jdbc.config.sharding.tables.user.table-strategy.standard.sharding-column: id
sharding.jdbc.config.sharding.tables.user.table-strategy.standard.precise-algorithm-class-name: com.forezp.sharedingjdbcmasterslavetables.MyPreciseShardingAlgorithm

sharding.jdbc.config.sharding.master-slave-rules.ds_0.master-data-source-name: db-test0
sharding.jdbc.config.sharding.master-slave-rules.ds_0.slave-data-source-names: db-test1,db-test2

  • 在上面的配置中,sharding.jdbc.dataSource部分是配置的数据源的信息,本案例有三个数据源db-test0、db-test1、db-test2。

  • sharding.jdbc.config.sharding.master-slave-rules.ds_0.master-data-source-name配置的是主库的数据库名,本案例为db-test0,其中ds_0为分区名。

  • sharding.jdbc.config.sharding.master-slave-rules.ds_0.slave-data-source-names配置的是从库的数据库名,本案例为db-test1、db-test2。

  • sharding.jdbc.config.sharding.tables.user.actual-data-nodes配置的分表信息,真实的数据库信息。ds_0.user_$->{0…3},表示读取ds_0数据源的user_0、user_1、user_2、user_3。

  • sharding.jdbc.config.sharding.tables.user.table-strategy.standard.sharding-column配置的数据分表的字段,是根据id来分的。

  • sharding.jdbc.config.sharding.tables.user.table-strategy.standard.precise-algorithm-class-name是配置数据分表的策略的类,这里是自定义的类MyPreciseShardingAlgorithm。

MyPreciseShardingAlgorithm是根据id取模4来获取表名的,代码如下:

public class MyPreciseShardingAlgorithm implements PreciseShardingAlgorithm<Integer> {

	@Override
	public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Integer> shardingValue) {
		for (String tableName : availableTargetNames) {
			if (tableName.endsWith(shardingValue.getValue() % 4 + "")) {
				return tableName;
			}
		}
		throw new IllegalArgumentException();
	}

}

测试

写一个API来测试,代码如下:

@RestController
public class UserController {

    Logger logger= LoggerFactory.getLogger(UserController.class);

    @Autowired
    private UserService userService;

    @GetMapping("/users")
    public Object list() {
        return userService.list();
    }

    @GetMapping("/add")
    public Object add() {

        for(int i=100;i<150;i++) {
            User user = new User();
            user.setId(i);
            user.setUsername("forezp"+(i));
            user.setPassword("1233edwd");
           long resutl=   userService.addUser(user);
            logger.info("insert:"+user.toString()+" result:"+resutl);
        }
        return "ok";
    }
}

启动Spring Boot工程,在浏览器上执行localhost:8080/add,然后去数据库中查询,可以看到user_0、user_1、user_2、user_3分别插入了数据。
然后访问localhost:8080/users,可以查询数据库中四个表中的所有数据。可见Sharding-JDBC在插入数据的时候,根据数据分表策略,将数据存储在
不同的表中,查询的时候将数据库从多个表中查询并聚合。

在数据库的主机的日志里面,可以看到查询的日志也验证了这个结论,如下:

2019-06-20T02:50:25.183174Z	 2030 Query	select @@session.transaction_read_only
2019-06-20T02:50:25.193506Z	 2030 Query	INSERT INTO user_2 (
          id, username, password
        )
        VALUES (
        134,
        'forezp134',
        '1233edwd'
        )

...省略

从库查询日志:

2019-06-20T02:41:28.450643Z	 7367 Query	SELECT u.* FROM user_1 u
2019-06-20T02:41:28.450644Z	 7366 Query	SELECT u.* FROM user_0 u
2019-06-20T02:41:28.461238Z	 7367 Query	SELECT u.* FROM user_3 u
2019-06-20T02:41:28.462188Z	 7366 Query	SELECT u.* FROM user_2 u

源码

https://github.com/forezp/SpringBootLearning/tree/master/sharding-jdbc-example/shareding-jdbc-master-slave-tables

参考资料

https://github.com/apache/incubator-shardingsphere-example/releases/tag/3.1.0.M1

https://shardingsphere.apache.org/document/current/cn/overview/

https://github.com/apache/incubator-shardingsphere

https://mp.weixin.qq.com/s/VlJ_3oN0Us2e_ZPk0sDT7w


扫码关注有惊喜

(转载本站文章请注明作者和出处 方志朋的博客

已标记关键词 清除标记
课程简介 随着互联网的发展,软件的规模在逐渐变大,用关系型数据库如何存储和处理大规模的业务数据成为企业面临的挑战, 关系型数据库作为OLTP(联机事务处理过程)系统的首选毋庸置疑,但是关系型数据面对大规模数据的处理有其先天的不足,比如单表存储上千万数据时便会出现不同程度的处理速度缓慢问题,如何解决?分库分表技术就是为了解决由于数据量过大而导致数据库性能降低的问题,将原来独立的数据库拆分成若干数据库组成 ,将数据大表拆分成若干数据表组成,使得单一数据库、单一数据表的数据量变小,从而达到提升数据库性能的目的。本课程将系统的讲解分库分表技术。 课程价值 分库分表技术是为解决关系型数据库存储和处理大规模数据的问题,主要应用于OLTP系统,它与应用于OLAP(联机分析处理)的大数据技术有不同的应用场景,本课程本着从解决生产实际问题出发,讲授分库分表技术的解决方案,包括:垂直分库、垂直分表、水平分库、水平分表读写分离,涵盖了分库分表的各种方案,并且深入讲解Sharding-JDBC框架的原理及使用方法,通过学习本课程可以快速应用到生产实践中。 课程优势 本课程不仅讲解多种有效的分库分表的解决方案,还深入讲解了Sharding-JDBC框架的原理和使用方法,Sharding-JDBC是一套轻量级的对代码零侵入的框架,在生产中有广泛的使用。本课程从思想原理、技术框架、案例实操三个方面去学习,可以快速的将分库分表技术应用到生产实践中,解决大数据存储与处理的问题。
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页